
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20

Download by: [University of Wisconsin - Madison] Date: 19 January 2017, At: 11:54

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

Enabling point pattern analysis on spatial big
data using cloud computing: optimizing and
accelerating Ripley’s K function

Guiming Zhang, Qunying Huang, A-Xing Zhu & John H. Keel

To cite this article: Guiming Zhang, Qunying Huang, A-Xing Zhu & John H. Keel (2016)
Enabling point pattern analysis on spatial big data using cloud computing: optimizing and
accelerating Ripley’s K function, International Journal of Geographical Information Science,
30:11, 2230-2252, DOI: 10.1080/13658816.2016.1170836

To link to this article: http://dx.doi.org/10.1080/13658816.2016.1170836

Published online: 11 Apr 2016.

Submit your article to this journal

Article views: 293

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2016.1170836
http://dx.doi.org/10.1080/13658816.2016.1170836
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2016.1170836
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2016.1170836
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2016.1170836&domain=pdf&date_stamp=2016-04-11
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2016.1170836&domain=pdf&date_stamp=2016-04-11

Enabling point pattern analysis on spatial big data using
cloud computing: optimizing and accelerating Ripley’s K
function
Guiming Zhanga, Qunying Huanga, A-Xing Zhub,c,d,e,a and John H. Keelf

aDepartment of Geography, University of Wisconsin-Madison, Madison, WI, USA; bKey Laboratory of Virtual
Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, China; cState Key
Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing, China; dState Key Laboratory
of Resources and Environmental Information System, Institute of Geographical Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing, China; eJiangsu Center for Collaborative
Innovation in Geographical Information Resource Development and Application, Nanjing, China; fDivision
of Information Technology, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT
Performing point pattern analysis using Ripley’s K function on
point events of large size is computationally intensive as it
involves massive point-wise comparisons, time-consuming edge
effect correction weights calculation, and a large number of simu-
lations. This article presented two strategies to optimize the algo-
rithm for point pattern analysis using Ripley’s K function and
utilized cloud computing to further accelerate the optimized algo-
rithm. The first optimization sorted the points on their x and y
coordinates and thus narrowed the scope of searching for neigh-
boring points down to a rectangular area around each point in
estimating K function. Using the actual study area in computing
edge effect correction weights is essential to estimate an unbiased
K function, but is very computationally intensive if the study area
is of complex shape. The second optimization reused the pre-
viously computed weights to avoid repeating expensive weights
calculation. The optimized algorithm was then parallelized using
Open Multi-Processing (OpenMP) and hybrid Message Passing
Interface (MPI)/OpenMP on the cloud computing platform.
Performance testing showed that the optimizations effectively
accelerated point pattern analysis using K function by a factor of
8 using both the sequential version and the OpenMP-parallel
version of the optimized algorithm. While the OpenMP-based
parallelization achieved good scalability with respect to the num-
ber of CPU cores utilized and the problem size, the hybrid MPI/
OpenMP-based parallelization significantly shortened the time for
estimating K function and performing simulations by utilizing
computing resources on multiple computing nodes.
Computational challenge imposed by point pattern analysis tasks
on point events of large size involving a large number of simula-
tions can be addressed by utilizing elastic, distributed cloud
resources.

ARTICLE HISTORY
Received 19 October 2015
Accepted 21 March 2016

KEYWORDS
Point pattern analysis;
Ripley’s K function;
optimization; MPI/OpenMP;
geospatial cloud computing

CONTACT A-Xing Zhu azhu@wisc.edu
The underlying C++ computer program and test data sets for this article can be accessed at https://goo.gl/0nBi7y.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016
VOL. 30, NO. 11, 2230–2252
http://dx.doi.org/10.1080/13658816.2016.1170836

© 2016 Informa UK Limited, trading as Taylor & Francis Group

https://goo.gl/0nBi7y
http://www.tandfonline.com

1. Introduction

Point pattern analysis is the study of the spatial arrangement of point events (i.e., a set of
locations over which certain geographic phenomenon of interest occurs) in space
(Diggle 1983, Illian et al. 2008). It identifies the pattern (i.e., dispersed, clustered, or
random) underlying the spatial distribution of the geographic phenomenon and thus
can inform formulating hypotheses to investigate the phenomenon-generating mechan-
isms and processes. Point pattern analysis is a useful analytical tool that has been widely
applied in ecology, epidemiology, crime pattern analysis, economics, etc. (Fotheringham
et al. 2000, Law et al. 2009). Among the many methods that have been developed to
approach point pattern analysis (see Fotheringham et al. 2000, Illian et al. 2008, Burt
et al. 2009 for reviews), Ripley’s K function has advantages over other alternatives. For
instance, the quadrat analysis method is sensitive to the parameter quadrat size used to
define grids within which the number of points is counted. Different quadrat sizes might
lead to different conclusions on the same point data set (Fotheringham et al. 2000, Burt
et al. 2009). The kernel estimation method requires a similar parameter: bandwidth. The
determination of quadrat size or bandwidth mostly relies on experience and therefore is
rather subjective. Ripley’s K function, on the other hand, does not require such para-
meters. The nearest neighbor distance method considers only the nearest neighbor and
ignores spatial dependencies between points beyond the nearest neighbor and thus
reflects only the shortest scale of spatial variation. Ripley’s K function, however, provides
an estimate of spatial dependence over a much wider range of scales and considers all
the distances between point events in the study area.

Spatial big data are now ubiquitous (Shekhar et al. 2012, Evans et al. 2013) and point
pattern analysis on such spatial big data sets is needed for scientific or pragmatic
purposes. With the emergence and prosperity of social media, location-based services,
citizen science projects, etc., the general public are generating and contributing an
unprecedentedly large volume of volunteered geographic information (Goodchild
2007). Much of this data can be perceived as point events. Examples are tourist attrac-
tions from OpenStreetMap (Haklay and Weber 2008), birding checklists from eBird
(Wood et al. 2011), and geo-tagged posts from social media such as Twitter. Point
pattern analysis on such data sets is of interest to many audiences. Ornithologists
model the geographic distribution pattern of bird species using eBird records (Wood
et al. 2011). Amateur birders identify birding hotspots by examining spatial pattern of
other birders’ birding sites. Researchers mine spatial pattern of people’s tweeting loca-
tions in disasters to provide decision support for disaster relief (Gao et al. 2011).

Ripley’s K function approach for point pattern analysis is computationally challenging
especially on point events of large sizes. Existing software packages for point pattern
analysis with Ripley’s K function (e.g., Splancs and Spatstat in R; see Rowlingson and
Diggle 1993, Baddeley and Turner 2005) are limited to handle only hundreds or thou-
sands of points. In this big data era, point data sets however, usually include millions of
points (e.g., eBird checklist). The acceleration of Ripley’s K function is urgently needed to
enable point pattern analysis on spatial big data.

High-performance computing (HPC) has been used to address the computational
challenges posed by GIScience applications (Yang et al. 2010, Wright and Wang 2011,
Wang 2013). Parallel programming models such as OpenMP (Open Multi-Processing),

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2231

MPI (Message Passing Interface), CUDA (Compute Unified Device Architecture), and
MapReduce are widely adopted to make full use of the computing power of multi-
processor CPUs (central processing units) and massively parallel GPUs (graphic proces-
sing units) to accelerate geoprocessing and spatial analysis (Mineter et al. 2000,
Stojanovic and Stojanovic 2013, Gao et al. 2014, Pijanowski et al. 2014, Tang et al.
2015). Yet few studies focused on utilizing HPC for point pattern analysis although a
massive parallelization method was developed recently to accelerate K function using
the many-core architecture GPUs (Tang et al. 2015). Computation tasks of estimation K
function on a large point data set were scheduled to many GPU cores to compute K
function in parallel. Monte Carlo simulations were distributed to GPUs interconnected in
a HPC cluster to accelerate the statistical significance testing (Tang et al. 2015). However,
building an HPC system, especially a GPU-based HPC cluster, is costly and time-consum-
ing. A large financial investment and several weeks or even months are required to
purchase the servers and configure the hardware and software while building up a
middle-scale HPC system (Huang et al. 2013a). Consequently, only a few organizations
can afford or have access to these expensive computing facilities. Besides, such systems
are also difficult and expensive to maintain and operate.

In recent years there has been an explosion of interest in using cloud computing to
access computing resources (Yang et al. 2011, Huang et al. 2013b). Cloud computing, an
emerging computing paradigm with the capability of provisioning on-demand comput-
ing resources, overcomes some shortcomings of traditional HPC. Cloud computing
releases the user from cost and effort on purchasing and maintaining the physical
infrastructure. It is built on virtualization technology and this enables cloud service
providers (e.g., Amazon EC2, Google App Engine, and Microsoft Azure) offer users elastic
and scalable computing resources in a pay-as-you-go manner. Users request computing
resources that match the computing task at hand, and could be flexibly scaled up or
down as computing task changes. These features make cloud computing very appealing
and it has been utilized for geoprocessing and spatial big data analytics (Wang et al.
2009, Li et al. 2011, Shekhar et al. 2012). Applications include retrieving and indexing
spatial data (Wang et al. 2009), processing intensive floating car data for urban traffic
surveillance (Li et al. 2011), running coupled atmosphere-ocean climate models
(Evangelinos and Hill 2008), and supporting dust storm forecasting (Huang et al.
2013a). Yet to the best of our knowledge there is no study that has been conducted
to exploit cloud computing for point pattern analysis on spatial big data.

This study exploited cloud computing to accelerate point pattern analysis with
Ripley’s K function. A series of strategies were designed to optimize the algorithm for
estimating K function. The optimized algorithm was then parallelized in a cloud comput-
ing environment using two programming models: OpenMP and hybrid MPI/OpenMP.
The overall goal was to enable point pattern analysis on spatial big data with Ripley’s K
function accelerated utilizing cloud computing. Section 2 introduced Ripley’s K function
and analyzed the algorithmic complexity of estimating K function. Section 3 presented
the basic idea for optimizing the algorithm for estimating K function, implementations
of the optimizations, and parallelization of K function. A description of the cloud
computing platform utilized to test the algorithm was presented in Section 4.
Effectiveness of the optimizations and efficiency of the parallelization were then eval-
uated in Section 5. This article ends with conclusions in Section 6.

2232 G. ZHANG ET AL.

2. Ripley’s K function for point pattern analysis

For an isotropic, stationary process, Ripley’s K function is defined as (Ripley 1988):

K hð Þ ¼ 1
λ
E hð Þ (1)

where λ is the intensity of point events and E(h) is the expected number of point events
within distance h. K function is estimated by:

K̂ hð Þ ¼ A
n:n

XX
i�j

Ih dij
� �
wij

(2)

where A is the area of the study area; n is the total number of points; dij is the distance
between points i and j; Ih(dij) = 1 if dij ≤ h, otherwise Ih(dij) = 0; wij is a weighting function
that corrects edge effect. K function without edge effect correction is biased and should
not be used for data analysis (Baddeley and Turner 2005). Ripley’s isotropic correction
was adopted for edge effect correction in this study, which defines wij as the proportion
of circumference that lies within the study area on a circle of radius dij centered on point
i (Ripley 1988). Isotropic edge effect correction weights were calculated using the
discrete Green formula (Baddeley et al. 2015, A. Baddeley, personal communication, 26
March 2015). If a point pattern follows the property of complete spatial randomness
(CSR), K̂ hð Þ is expected to be πh2. Thus, equivalently, whether a point pattern is CSR or
not can be determined by examining:

L̂ hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂ hð Þ=π

q
(3)

A point pattern is CSR if L̂ hð Þ = h (i.e., the expected L(h)), clustered if L̂ hð Þ > h, and

dispersed if L̂ hð Þ < h.
A large number of simulations are required to obtain empirical distribution of the

statistics to test whether an observed point pattern is significantly different from CSR
(Diggle 1983, Fotheringham et al. 2000). Monte Carlo and bootstrapping are two
common approaches for simulations. The Monte Carlo approach generates many reali-
zations of CSR (e.g., 1000 realizations) and the expected L(h) is estimated on each CSR
realization (Baddeley and Turner 2005). Confidence intervals constructed based on L(h)
estimated on these CSR realizations are then compared to the L̂ hð Þ estimated on the
observed point pattern to determine whether its departure from CSR is statistically
significant. The bootstrapping approach, which was adopted in this article, takes a
different strategy. It repeatedly resamples the point events randomly with replacement
and generates bootstrap samples (e.g., 1000 bootstrap samples) of the underlying

population of the observed point pattern (Fotheringham et al. 2000). L̂ hð Þ is estimated

on each bootstrap sample and confidence intervals of L̂ hð Þ are then compared to the L
(h) expected on CSR to determine its statistical significance.

Point pattern analysis using K function is computationally intensive. For a particular
distance h0 under consideration, it takes Ο(n

2) point-wise comparisons to compute L̂ h0ð Þ
where n is the number of points. In each point-wise comparison, the edge effect
correction weight is calculated based on geometric arrangement of the two points

and the study area boundary. The complexity of computing L̂ h0ð Þ then becomes Ο

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2233

(m·n2) where m is the number of vertices on the study area boundary. L̂ hð Þ is estimated
over a series of distances and the complexity becomes Ο(v·m·n2) where v is the number
of distinct distances. Simulations required for statistical significance testing adds to the
complexity. Let s be the number of simulations runs, the complexity of point pattern
analysis using K function becomes Ο(s·v·m·n2). As a result, point pattern analysis using
Ripley’s K function on large point data sets in the study areas of complex geometric
shape (i.e., the boundary is composed of many vertices) at various spatial scales is
extremely slow. Ripley’s K function needs to be accelerated to enable point pattern
analysis on spatial big data.

3. Optimizing and parallelizing K function

3.1. The basic idea

Computing L̂ h0ð Þ at a given distance h0 requires nested traversals over the n points. The
outer traversal goes through each of the n points. For each point Pi traversed, another
traversal (i.e., the inner traversal) over the n points is needed to count the number of
points within distance h0 from Pi (i.e., number of points located in a circle centered at Pi
of radius h0). Obviously, in this inner traversal, checking points that are way further than
distance h0 from Pi is not necessary; examining only those points that could potentially
be in the circular neighborhood of radius h0 around Pi is sufficient. Admittedly, if the n
points are not in any order, it is indeed impossible to determine whether a point is
within circular neighborhood of Pi unless its distance to Pi is calculated and compared to
h0. However, if points are properly sorted on their x and y coordinates, the inner traversal
can be confined to a rectangular area around Pi. In this case, unnecessary distance
calculation between Pi and points outside the rectangular area can be avoided
(Figure 1). In other words, computation involved in each inner traversal is largely
reduced. The complexity of point pattern analysis using K function, Ο(s·v·m·n2), could
be optimized to Ο(s·v·m·n·n’) where n’ is the average number of points checked in an
inner traversal. Foreseeably, n’ can be much smaller than n especially for a short
distance h0.

In the inner traversal, it is actually not simply counting the number of points. The
edge effect correction weight needs to be computed for each point Pj in the circular
neighborhood of Pi. Isotropic correction defines the weight wij as the proportion of
circumference within the study area on a circle centered on Pi of radius dij. Computing
the weight involves complicated geometric operations involving Pi, Pj, and the boundary
of the study area. This is computationally expensive if the polygonal study area is of a
complex shape. However, it is noteworthy that a weight, once computed, could be
reused to avoid repeating the expensive computation (Figure 1). An edge effect correc-
tion weight can be reused in two cases. In the first case, there might be points other
than Pj that are of distance dij to Pi (i.e., these points are on the same circle centered on
Pi of radius dij). The edge effect correction weights for these points are by definition
equal to wij, the edge effect correction weight for Pj. In the second case, edge effect
correction weights can be reused in subsequent bootstrapping simulations that are
required for statistical significance testing. A bootstrap sample consists of n points
that are randomly resampled, with replacement, from the n original points. In estimating

2234 G. ZHANG ET AL.

L̂ hð Þ on a bootstrap sample, the edge effect correction weights for points in circular
neighborhood of Pi can be reused, instead of being computed again, as they have been

computed in the initial run to estimate L̂ hð Þ on the original points. By reusing edge
effect correction weights, the complexity of bootstrapping simulations, Ο(s·v·m·n·n’)
could be optimized to Ο(s·v·n·n’). The factor m (i.e., the number of vertices on the
boundary of the study area) disappeared. The complexity no longer depends on the
shape of the study area in bootstrapping simulations. It should be noted that the second
case of reusable weights only holds true for bootstrapping simulations (which was
adopted in this study) but not for Monte Carlo simulations. Nevertheless, even if
Monte Carlo simulations were adopted for significance testing, the first case of reusable

weights still holds true both for the initial run to estimate L̂ hð Þ on the original points and
for Monte Carlo simulations. In this regard, reusing edge effect correction weights is
applicable for optimizing point pattern analysis using K function in general. Yet, it is
expected that reusing the weights would benefit bootstrapping simulations more than
Monte Carlo simulations in terms of computation speedup.

There are two levels of parallelism in point pattern analysis using K function (includ-
ing initial estimation and subsequent simulations) that can be exploited to accelerate
the process. At the first level, in the initial run to estimate L̂ hð Þ or in one simulation run,
the outer traversal over the n points can be done in parallel because counting the
number of points in circular neighborhood of any point, as well as computing edge
effect correction weights for those points, is independent from that of another point in
the outer traversal. At the second level, each simulation run is independent from each
other and thus can be conducted in parallel.

Figure 1. Optimizations to the algorithm for estimating K function. By sorting points using their x, y
coordinates, inner traversal was confined to the rectangular area around Pi. Edge effect correction
weights for Pj, Pk, and Pl should be identical by definition. Thus wij was reused when computing
weights for Pk, and Pl.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2235

3.2. Optimizations

3.2.1. Sorting points
The first optimization strategy was designed to confine the inner traversal to the
rectangular neighborhood of any point i. To achieve this goal, points were sorted on
their x and y coordinates before estimating K function on the points. The sorting was
done in two steps. First, the x coordinate range of the n points was divided into equi-
width bins, and the number of bins is specified by the user. Each point was put into the
bin corresponding to its x coordinate. Second, points in each bin were sorted on their y
coordinates. The vector container in C++ standard library was used as an in-memory
data structure to hold the points and the sort function provided by the standard library
was utilized to efficiently sort the points. Given the sorted points, when computing L̂ h0ð Þ
at a given distance h0, each inner traversal for Pi was limited to a roughly rectangular
area which is the minimum bounding box for the circle centered at Pi and with h0 as the
radius. The inner traversal started at Pi, and points in the same bin as Pi were then
examined along both the increasing y direction and the decreasing y direction. Traversal
in either direction stopped once the absolute y-coordinate difference between a point
under examination and Pi exceeded h0, or if the point with the minimum or the
maximum y-coordinate in the bin was examined. The traversal then expanded to
neighbor bins that could potentially contain points that were distance h0 away from Pi
on x-axis (i.e., the largest possible absolute x-coordinate difference between any point in
a neighbor bin and Pi was no further than h0). Similarly, traversal within each qualified
neighbor bin was then conducted by selecting a random point as the starting point. If
the starting point was further than distance h0 on the y-axis from Pi, traversal proceeded
along the y direction towards Pi, otherwise traversal proceeded along both the increas-
ing y direction and the decreasing y direction. Criteria to stop traversal within each bin
remained the same.

3.2.2. Reusing edge effect correction weights
The second optimization strategy was designed for reusing edge effect correction
weights. Edge effect correction weights for points in the circular neighborhood with
respect to Pi were stored in a hash table associated with Pi. The hash table was filled in
with <di·, wi·> entries where di· was the distance from Pi to a point in its neighborhood;
wi· was the edge effect correction weight for that point. The key in the hash table for this
entry was a hashed value of the distance di·. Suppose it was needed to compute edge
effect correction weight wik for Pk in the neighborhood of Pi. First, the distance dik was
calculated and compared to existing <di·, wi·> entries in the hash table associated with
Pi. The entry <dix, wix> in which dix was the closest to dik was returned. Let Δd be the
minimum distance difference at which difference in edge effect correction weights can
be ignored. If |dik – dix| ≤ Δd, then wik = wix (i.e., the weight was reused). Otherwise, wik

was computed based on Ripley’s isotropic correction and a new entry <dik, wik> was
inserted into the hash table associated with Pi. Here Δd was a distance tolerance that
served to quantize the distance. This tolerance was of necessity because there is a low
probability that the two points will have exactly the same distance to Pi. Using a larger
Δd could reduce the number of edge effect weight calculations. Using a smaller Δd,
however, will produce a more accurate K function. In determining the appropriate value

2236 G. ZHANG ET AL.

for Δd, as demonstrated in Section 5.4.1, the dimension of the study area needs to be
taken into account.

Upon completion of the initial run to estimate K function on the n points, every possibly
needed <di·, wi·> entries should have already been computed and stored in the hash table
associated to Pi. In subsequent bootstrapping simulations, any weight in need was directly
looked up from the hash table conveniently. The time complexity of either insertion or
search operation in a hash table is O(1) (Cormen 2009), meaning that inserting a <di·, wi·>
entry into the hash table or looking up a <di·, wi·> entry from the hash table only took
constant time that did not depend on the number of entries in the hash table.

3.3. Parallelization

The OpenMP programming model and the hybrid MPI/OpenMP programming model
were adopted to exploit parallelism exposed in the optimized algorithm for point
pattern analysis using K function.

3.3.1. OpenMP-based parallelization
The optimized algorithm was parallelized using OpenMP to exploit the first-level paral-
lelism. The shared-memory programming model OpenMP was a logical choice for
parallelizing K function because the massive point-wise comparisons involved in com-
puting L̂ hð Þ requires that the full point data set be accessible to the algorithm over the
course of computation. Given the full point data set in a shared memory, computation
on each of the points encountered in the outer traversal was independent from one
another (i.e., the first-level parallelism) and thus was parallelized utilizing multicore CPUs
in the OpenMP programming model. Specifically, the compiler directive ‘#pragma omp
parallel for’ was used to parallelize the outer level of the two nested for-loops iterating
through the points (i.e., the outer traversal), dispatching computation on each point (i.e.,
partial weighted count) to threads running on multicore CPUs. The array data structure

was used to record partial counts corresponding to distinct distances over which L̂ hð Þ
was estimated. Each thread had a local array to maintain the partial counts in order to
avoid race conditions where two or more threads were attempting to update the same
item in a globally shared array. Upon completion of the partial computation, partial

counts saved in local arrays were aggregated to compute L̂ hð Þ. These steps were
followed in both the initial estimation and simulations. In this OpenMP-based paralleli-
zation, only computing resource on a single computing node can be utilized.

3.3.2. Hybrid MPI/OpenMP-based parallelization
MPI can utilize computing resources distributed across different computing nodes.
The optimized algorithm was parallelized using the hybrid MPI and OpenMP pro-
gramming model to exploit both levels of parallelism. On top of the OpenMP-based
parallelization on each node, computation on different nodes was coordinated using
MPI by synchronizing executions and passing data between nodes whenever neces-
sary. Specifically, in the initial run to estimate K function, computation on the n points
(i.e., n outer traversal) was divided among computing nodes. Simulation runs were
also divided among computing nodes. Scheduling information, indicating which

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2237

points in the initial estimation and which simulation runs each node was responsible
for, was consistently determined based on MPI process rank (i.e., node ID).
Computation in the initial run on different nodes was synchronized using
‘MPI_Barrier’. Once all nodes had reached this synchronization point, partial results
on different nodes were then aggregated using ‘MPI_Reduce’ to compute L̂ hð Þ.
Simulation runs on different nodes were conducted independently and no synchro-
nization was needed. The amount of data transferred between computing nodes was
significantly reduced in the above implementation. Every node kept a copy of the
data files (i.e., the points and the study area) on its local hard drive. Upon invoked,
each computing node directly read data from the files. Thus transferring a large
amount of data (i.e., coordinates of the points and the study area) across nodes
was avoided. At the simulation stage, each node performed simulation runs indepen-
dently and saved results directly to files on its local hard drive.

4. Cloud computing platform

The proposed optimizations and parallelization were implemented and tested on a
private cloud platform because of the various advantageous features provisioned by
cloud computing (as discussed in Section 1). The cloud platform was built upon open-
source cloud solution – Eucalyptus (Nurmi et al. 2009). Several characteristics of
Eucalyptus make it a logical choice for this study. The design of Eucalyptus targets
infrastructure commonly found within academic and laboratory settings. It is portable,
modular, and easy to deploy atop existing computing resources (Nurmi et al. 2009).
Eucalyptus also has good virtual machine (VM) isolation and security strategies, and its
application programming interfaces are compatible with one of the popular public
clouds – Amazon EC2 (Huang et al. 2013c). Correspondingly, third-party plug-ins, such
as Hybridfox, which were originally developed to access EC2 cloud services, can be
directly used to manipulate Eucalyptus resources. There were no significant performance
differences in CPU, memory, and I/O of VMs created and managed by Eucalyptus and by
other open-source cloud solutions, such as OpenNebula and CloudStack (Huang et al.
2013c).

The underlying computing infrastructure includes three computing nodes. Each node
has 48 GB memory and dual eight-core CPU of 2.60 GHz. All nodes are connected
through local area networks (LANs with 10 Gbps). A VM with 16 virtual CPU cores with
the CPU speed of 2.6 GHz, 12 GB memory and 4 MB cache running Ubuntu 12.04
operating system was created. The GNU compiler collection and MPICH2 were installed
as OpenMP runtime and MPI runtime, respectively. This VM was then imaged and
another VM was created by launching a new instance from the image (i.e., the two
VMs had the same configuration). Experiments for evaluating effectiveness of the
optimizations and for testing performance of the OpenMP parallel algorithm were
performed on only one VM. Experiments testing performance of the hybrid MPI/
OpenMP parallel algorithm were performed on these two interconnected VMs.

2238 G. ZHANG ET AL.

5. Experiments

5.1. Experiment design

Experiments were designed to evaluate effectiveness of the optimizations and efficiency
of the parallelization. The necessity of edge effect correction and the associated com-
putational cost was assessed in Section 5.2. Effects of each of the two optimizations
were evaluated separately in Section 5.3 and 5.4 respectively. Effectiveness of the two
optimizations as a whole was evaluated in Section 5.5. The sequential K function
algorithm was used for these evaluations. Efficiency of the OpenMP-based parallelization
and the hybrid MPI/OpenMP-based parallelization was evaluated in Section 5.6. Point
pattern analysis using K function was then performed on a real-world data set using the
optimized and parallelized algorithm in Section 5.7.

Random points generated within an experimental study area were used in experi-
ments evaluating effectiveness of the optimizations and efficiency of the parallelization.
The expected K function on a random point pattern is known (see Section 2). Thus the
estimated K function can be directly compared to the expected K function to assess the
correctness of the optimizations. The experimental study area was the contiguous U.S.
The boundary of the contiguous U.S. was extracted from the 2014 version of carto-
graphic boundary shapefiles at a scale of 1: 2 million (U.S. Census Bureau 2015). Random
point patterns of varying sizes over the study area were generated as experimental point
data sets (Figure 2(a)). The real-word data set was the eBird checklist records reported by
amateur birders (Wood et al. 2011, eBird 2015). Each record had an explicit geographic
location expressed in longitude and latitude indicating where the birding session was
conducted. The records within the contiguous U.S. in summer months of 2012 were
extracted (228,858 points in total) (Figure 2(b)). In all experiments, unless otherwise
stated, K function was estimated at 2000 distinct distances at an equal interval in the
range of 0 to 700 km (i.e., the maximum distance at which K function was estimated).

In each experiment, execution time (i.e., elapsed time, or wall clock time) for estimat-
ing K function and the average execution time of one simulation were recorded. To
evaluate the effectiveness of the optimizations, speedup factor sf was defined as an
indicator of how much acceleration the optimizations achieved:

sf ¼ Toriginal=Toptimized (4)

Figure 2. (a) Random points generated within the contiguous U.S. (b) The eBrid checklists within the
contiguous U.S. in summer months of 2012.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2239

where Toriginal and Toptimized are the execution time of the original algorithm and the
optimized algorithm, respectively. To evaluate the efficiency of the parallelized algo-
rithm, speedup ratio sr was used an indicator of how much acceleration the paralleliza-
tion achieved (Wilkinson and Allen 2004):

sr ¼ Tsequential=Tparallel (5)

where Tsequential and Tparallel are the execution time of the sequential algorithm and the
parallel algorithm. The execution times mentioned above did not include time spent on
reading in data from files or writing outputs to files, and therefore allows for comparison
of the execution time of the algorithms.

5.2. Cost of edge effect correction

The computational cost of edge effect correction was expected to be proportional to the
geometric complexity of the study area (i.e., number of vertices on the study area
boundary). Point pattern analysis was performed on random point data sets using study
areas of different geometric complexity. Study areas of decreasing complexity were con-
structed by simplifying the original polygon with increasing simplifying tolerances. This
resulted in simplified polygons with decreasing number of vertices on the boundary
(Polygons 1 through 4 in Table 1). Random point data sets (n = 5000) were generated
within the original polygon as well as within each of the four simplified polygons (i.e., five
random point data sets in total). Point pattern analysis was performed on each random
point data sets using the corresponding polygon for edge effect correction. In addition,
Point pattern analysis was performed on the random point data set that were generated
within Polygon 4 but using the bounding box of the points for edge effect correction.

The estimated L̂ hð Þ was expected to be equal to h on random point data sets.
Figure 3 showed that edge effect correction using the actual polygonal study area

(i.e., Polygon 4) resulted in an estimation of L̂ hð Þ that aligned to the expected line

L̂ hð Þ ¼ h, whilst edge effect correction using the bounding box resulted in an estimation
of that was consistently above the expected line. Overestimation occurred if only the
bounding box of the points was used for edge effect correction. It would certainly lead
to a wrong conclusion that these points were clustered but in fact they occurred
randomly. Thus, calculating edge effect correction weights using the bounding box
was insufficient for edge effect correction. The actual polygonal study area was neces-
sary for edge effect correction in order to estimate an unbiased K function.

Figure 4 showed the execution time for estimating K function over 5000 random
points and the average execution time of one bootstrapping simulation using polygonal
study areas of different complexity for edge effect correction. The execution time

Table 1. Study areas of different level of geometric complexity that were used in the experiments.
Study area Simplifying distance tolerance (km) Number of vertices on the boundary

Polygon 0 The original polygon 2995
Polygon 1 5 560
Polygon 2 10 302
Polygon 3 20 179
Polygon 4 50 86

2240 G. ZHANG ET AL.

increased approximately linearly in the number of vertices on the study area boundary.
In subsequent experiments, in order to complete the experiments in an acceptable
amount of time, unless otherwise stated, random points were generated within
Polygon 4 and it was used for edge effect correction in default.

5.3. Effects of sorting points

By sorting all points on their x and y coordinates, the search for points that were within
distance h from a focal point can be confined to points within a rectangular

Figure 3. K function estimated on random points using either the bounding box or the actual
polygonal study area for edge effect correction.

Figure 4. Execution time of performing point pattern analysis on random points using the study
area of increasing geometric complexity for edge effect correction.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2241

neighborhood around the focal point (Sections 3.1 and 3.2). The degree to which the
searching scope can be narrowed down by sorting the points depended on the max-
imum distance hmax at which L̂ hð Þ was estimated. Point pattern analysis was performed
on a random point data set (n = 50,000) but with varying hmax. All hmax investigated
were no greater than one quarter of the dimension of the study area, as suggested by
Ripley (1979). The execution time of estimating K function on the sorted points was
compared to that on the unsorted points. In both cases, edge effect correction weights
were not reused in order to investigate the effects brought purely by sorting points.

Results in Figure 5 showed that sorting points indeed accelerated the initial estima-
tion and simulations. The speedup factor, defined as the ratio of execution time on
unsorted points to that on sorted points, was consistently higher than 1. It was obvious
that the speedup factor for either initial estimation or simulation increased decreasing
hmax. For hmax greater than 500 km, the speedup factor for initial estimation and
simulation were close to 1. But for smaller hmax such as 10 km, the estimation speedup
factor was greater than 40 and the simulation speedup factor was over 70. The smaller
hmax was, the larger degree to which sorting points helped confine the search scope
around a focal point and, therefore, accelerate computation. Sorting points can effec-
tively accelerate point pattern analysis using tasks performed at smaller spatial scales.

The time spent on sorting points was not included in the execution time. The sort
function implemented in C++ standard library was very efficient that sorting 50,000 random
points took nearly negligible time. Reading in the 50,000 random points and the study area
from files, organizing them in proper data structures, and sorting the points took about
0.98 second in total. Sorting the points was done only once prior to the initial estimation.

5.4. Effects of reusing edge effect correction weights

Performance of the algorithm optimized by only reusing edge effect correction weights
(i.e., no sorting points) was compared against performance of the original algorithm (i.e.,

Figure 5. Execution time of performing point pattern analysis on unsorted points and on sorted
points with varying hmax.

2242 G. ZHANG ET AL.

no optimization). In this way, the effects of reusing the weights alone can be investi-
gated by examining the impact of various parameters in point pattern analysis using K
function.

5.4.1. Impact of the distance difference threshold Δd
The distances in <di·, wi·> entries in the hash table had to be quantized when reusing
edge effect correction weights. The effect of quantization was that some weights looked
up from hash tables were only approximations of exact weights (Section 3.2.2). The
degree of approximation was determined by Δd, the ignorable distance difference. K
function estimated by reusing the weights could possibly differ from that estimated with
exact weights calculated on the fly. Thus it is necessary to examine the accuracy of the K
function estimated using algorithm with this optimization before embracing the com-
putational improvement brought by this optimization. Point pattern analysis was per-
formed on random points (n = 50,000). K function estimated by always computing the
weights on the fly was compared to those estimated by reusing the weights with
varying Δd. To quantify the deviation of the K function estimated by reusing the weights
(denoted as L̂Δd hð Þ) from that estimated without reusing the weights (denoted as L̂0 hð Þ),
the root mean-squared error (RMSE) between the two estimated K functions was
calculated:

RMSEΔd ¼
ffiXv
i¼1

L̂Δd hið Þ � L̂0 hið Þ� �2
=v

s
(6)

where v is the number of distinct distances (e.g., 2000) over which K function was
estimated. Results in Table 2 showed that the deviation increased with increasing Δd.
But as long as Δd did not exceed 1000 m, the RMSE was within 1 m. Figure 6(a) showed
that K function estimated by always computing the weights on the fly and that
estimated by reusing the weights (Δd = 500 m) were virtually identical.

The distance difference threshold Δd was a trade-off between accuracy of the
estimated K function and computational efficiency. As shown in Table 2, the execution
time for initial estimation decreased with increasing Δd because under a greater Δd,
more weights were reused and fewer weights were directly computed. The average
execution time of one simulation remained nearly the same under different Δd, the
reason being that, in simulations, the weights could always be looked up from hash
tables (Section 3.2.2). Although a smaller Δd implied that a larger number of entries
would be in the hash table associated with a point (thus required more memory space),

Table 2. Deviation of the K function estimated by reusing the weights from that estimated with
directly computed weights.

Ignorable distance difference Δd (m) RMSEΔd (m)

Execution time (second)

Estimation Simulation*

500 0.49 34.70 7.73
1,000 0.87 29.43 7.52
3,000 4.76 19.64 6.74
5,000 11.31 18.55 6.44
10,000 32.54 15.78 6.06
20,000 91.53 14.91 5.75

* Average execution time of one bootstrapping simulation.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2243

a hash table lookup only took constant time that was independent of the number of
entries in the hash table. In determining a proper value for Δd, one needs to take into
account the dimension of the study area as well as the density of the points (i.e., smaller
Δd for denser points). For experiments in this study, Δd was set to 500 m because it was
small enough to ensure an accurate estimation of K function without losing much
computational efficiency.

5.4.2. Impact of the study area complexity
The impact of geometric complexity of the study area on effectiveness of reusing edge
effect correction weights was examined. Figure 6(b) showed the execution time for
estimating K function on random point data sets (n = 5000) using study areas of varying
geometric complexity (i.e., varying number of vertices on the boundary) for edge effect
correction. Greater speedup factor was achieved with study areas of higher geometric
complexity for both initial estimation and simulations. The weight calculations were
more expensive with complex study areas. Thus reusing the weights achieved greater
acceleration. The acceleration achieved in simulations was much greater than that in
initial estimation. Although estimation speedup factors were relatively low, the absolute
execution time saved by reusing the weights was considerably significant. Acceleration
achieved in simulation increased much more rapidly than that in estimation with
increasing study area complexity. In simulations the weights can always be looked up

Figure 6. Effects of reusing edge correction weights. (a) K function estimated on random points with
or without reusing edge effect correction weights. (b) Impact of the study area complexity. (c)
Impact of the maximum distance hmax. (d) Impact of the problem size.

2244 G. ZHANG ET AL.

from hash tables because all the weights had been computed and stored in hash tables
upon completion of the initial estimation. The study area complexity became irrelevant
in simulations by reusing the weights. This was why the average time of one simulation
remained roughly the same regardless of geometric complexity of the study areas used
for edge effect correction. It was favorable to point pattern analysis tasks requiring a
larger number of simulations for statistical significance testing.

5.4.3. Impact of the maximum distance hmax

The impact of the maximum distance hmax on effectiveness of reusing edge effect
correction weights was assessed performing point pattern analysis on a random point
data set (n = 50,000) with different hmax. Results in Figure 6(c) revealed that both the
estimation speedup factor and the simulation speedup factor increased with increasing
hmax, but the simulation speedup factor was generally higher than the estimation
speedup factor.

5.4.4. Impact of the problem size
The impact of the problem size on effectiveness of reusing edge effect correction
weights was assessed performing point pattern analysis on random point data sets of
various sizes. Results in Figure 6(d) revealed that the simulation speedup factor was
generally higher than the estimation speedup factor. The simulation speedup factor
dropped only slightly as the problem size increased while the estimation speedup factor
increased with increasing problem size.

It is noteworthy that acceleration achieved by reusing edge effect correction weights
was indeed a space-time trade-off. Larger memory space was traded for shorter execu-
tion time. Besides memory required by data structures that organized the points, hash
tables containing <di·, wi·> entries definitely required additional memory. The benefit,
however, was that both insertion and search operation on a hash table can be done in
constant time regardless of the hash table length (Cormen 2009). Given enough mem-
ory, reusing the weights accelerated computation by replacing expensive weight calcu-
lations with cheap hash table lookups.

5.5. Overall effectiveness of the optimizations

The overall effectiveness was evaluated by comparing performance of the algorithm
optimized by the two optimizations against performance of the original algorithm.
Computational intensity of point pattern analysis using K function was largely deter-
mined by the maximum distance hmax and problem size.

5.5.1. Impact of the maximum distance hmax

Point pattern analysis was performed using both the original algorithm and the optimized
algorithm on a random point data set (n = 50,000) with varying hmax. Results in Figure 7(a)
showed that the speedup factors achieved by the two optimizations were slightly higher
than those achieved by any one of them alone (see Figures 5 and 6(c) for comparisons). Both
the estimation speedup factor and the simulation speedup factor increased with decreasing
hmax. For smaller hmax, acceleration achieved by the optimizations was dictated by sorting
points. For larger hmax, acceleration achieved was dictated by reusing the weights. Overall,

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2245

for large hmax such as 700 km, a baseline speedup factor of about 5 and 8 were achieved in
estimation and simulation, respectively; For small hmax such as 10 km, a speedup factor of
about 50 and 135 can be achieved in estimation and simulation, respectively.

5.5.2. Impact of the problem size
Point pattern analysis was performed using the original algorithm and using the optimized
algorithm on random point data sets of various sizes. Results in Figure 7(b) showed that
speedup factors achieved by the two optimizations were slightly higher than those
achieved by solely reusing the weights (see Figure 6(d) for comparisons). The estimation
speedup factor increased with increasing problem size. For small problem size such as 5000
points, an estimation speedup factor of about 2 was achieved; for problem size with points
up to 100,000, an estimation speedup factor of about 6.5 was achieved. A constant
simulation speedup factor of about 8 was achieved regardless of the problem size.

The optimization strategies effectively accelerated point pattern analysis using K
function. Sorting points dictated the acceleration achieved in cases where the spatial
scale examined was relatively small compared to the dimension of the study area.
Reusing edge effect correction weights dictated the acceleration achieved in cases
where the study area was geometrically complex, the spatial scale examined was
large, or the size of the point events was large. A constant speedup factor of about 8
was achieved by the optimizations in simulations regardless of the size of point events.
This was practically significant because a large number of simulations were required for
statistical significance testing.

5.6. Parallelization efficiency

5.6.1. OpenMP-based parallelization
Performance of the optimized algorithm parallelized using OpenMP was evaluated by
performing point pattern analysis on the two random point data sets (n = 50,000 and
n = 100,000, respectively). Figure 8 showed the speedup ratio on varying number of CPU
cores. Speedup ratio achieved in simulation was consistently higher than that achieved
in the initial estimation. This was practically beneficial as a large number of simulations

Figure 7. Overall effectiveness of the two optimizations. (a) Impact of the maximum distance hmax.
(b) Impact of the problem size.

2246 G. ZHANG ET AL.

are required for significance testing whilst the initial estimation only needs to be
conducted once. The speedup ratios were only slightly lower than the ideal linear
speedup. There was no significant difference in speedup ratios achieved in simulations
between the two data sets. But the speedup ratios were higher for both simulation and
initial estimation on the larger data set. This indicates that the OpenMP-based parallel
algorithm achieved fairly good scalability with respect to both the number of CPU cores
and problem size. Thus it is reasonable to expect that utilizing more CPU cores can
match the computational intensity imposed by point pattern analysis tasks of large
problem sizes.

The gap between the achieved speedup ratio and the ideal linear speedup was
widening with the increasing number of CPU cores. This was most probably due to
‘false sharing’ in which multiple threads modify variables residing in the same cache line
and thus seemingly independent computation on threads was slowed down because of
the high cost of maintaining coherent copy of the cache line in thread-local cache
(Torrellas et al. 1994). It also explained why the gap between the simulation speedup
ratio and the ideal linear speedup was not as large as estimation speedup ratio. In the
initial estimation, many updates (i.e., insertions) were performed on the hash tables. But
in simulations read-only lookup was the dominant operation performed on the hash
tables.

5.6.2. Hybrid MPI/OpenMP-based parallelization
Performance of the optimized algorithm parallelized using hybrid MPI/OpenMP was
evaluated by performing point pattern analysis on the two random point data sets
used in testing the OpenMP parallel algorithm. Results in Table 3 showed that the
execution time of the hybrid MPI/OpenMP parallel algorithm running on one computing
node was very close to that of the OpenMP parallel algorithm. There was only slight

Figure 8. Speedup ratio of the OpenMP-parallel program for performing point pattern analysis on
the two random point data sets.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2247

overhead in the initial estimation and negligible overhead at the simulation stage by
using MPI on top of OpenMP. Running on two nodes, the initial estimation time was
much shorter than that running on one node. This was expected because the computa-
tion involved in the initial estimation was split up over more computing resources.
However, the nonlinear relationship between the reduction of estimation and the
number of nodes (i.e., estimation time using 2 nodes was more than half of that using
1 node) suggests additional overhead was introduced by communication and synchro-
nization among MPI nodes. Moreover, simply dividing the points by equal number did
not guarantee that the actual computation was equally dispatched among computing
nodes because computation associated to each point may vary (e.g., points close to the
study area boundary got involved more often in edge effect correction weights
calculation).

The average time of one simulation using 2 nodes was very close but slightly higher
than that of one node. This could be due to the extra communication overhead of VMs
attributed by the virtualization technology (Huang et al. 2013c). At the same time, the
time to complete a given number of simulations can be significantly reduced by utilizing
multiple computing nodes. The computational intensity imposed by point pattern
analysis tasks performed on large point data sets and involving a large number of
simulation runs can be matched by utilizing computing resources on multiple comput-
ing nodes.

5.7 Point pattern analysis on a real-world data set

The optimized algorithm and its OpenMP and hybrid MPI/OpenMP parallelization were
evaluated using the real-word data set – eBrid checklist data set (n = 228,858), and the
results were shown in Table 4 (suppose 1000 bootstrapping simulations were required
for significance testing). Compared to the original algorithm (i.e., no optimization) which

Table 3. Execution time (in second) to perform point pattern analysis on the two random point data
sets using the OpenMP-based and the hybrid MPI/OpenMP-based parallel algorithms. 16 CPU cores
were utilized on each computing node.

Number of points

OpenMP Hybrid MPI/OpenMP

1 computing node 1 computing node 2 computing nodes

Estimation Simulation* Estimation Simulation* Estimation Simulation*

n = 50,000 29.21 6.17 32.67 6.21 18.07 6.22
n = 100,000 87.67 24.36 89.68 24.42 49.03 26.07

* Average execution time of one bootstrapping simulation.

Table 4. Execution time of performing point pattern analysis on the eBrid checklist data set (228,858
points, 1000 simulations).

Algorithm
Estimation
(minute)

Simulation*
(minute)

Estimated total time
(hour) Speedup

Original (sequential) 973.69 393.03 6566.70 1.0
Optimized (sequential) 118.36 44.94 750.90 8.75
OpenMP (16 CPU cores) 10.53 3.48 58.22 112.79
Hybrid MPI/OpenMP (2 computing nodes, 16
CPU cores on each)

7.37 3.56 29.79 220.45

* Average execution time of one bootstrapping simulation.

2248 G. ZHANG ET AL.

could take 6566 hours to complete, the optimized algorithm could complete the task
about 9 times faster. The optimized algorithm parallelized using OpenMP running on 16
CPU cores could complete the task 113 times faster. The optimized algorithm paralle-
lized using hybrid MPI/OpenMP running on 2 computing nodes, each with 16 CPU cores,
could complete the task 220 times faster.

The significant speedup in the point pattern analysis of the eBird checklist data set
demonstrates the importance or the power of using parallel Ripley’s K in spatial pro-
blem-solving. For example, to gain a more comprehensive assessment of the spatial
nature of a large volume of point data (such as the eBird checklists presented above)
one might need to examine the spatial pattern across different scales with smaller h
values through larger h values. In the eBird checklist example, through this multiscale
point pattern analysis we can compare the estimated L̂ hð Þ for the real data set with the
expected K function across many different h values and then draw conclusion about the
spatial nature of the eBird checklist data set (Figure 9). Given what we have seen above,
conducting this type of analysis using a sequential Ripley’s K function is extremely time-
consuming, even to the level which prohibits this comprehensive analysis. With the
parallel implementation of Ripley’s K function, tasks such as this type can be routinely
conducted in spatial problem-solving.

6. Conclusions

This article presented two strategies (i.e., sorting points and reusing edge effect correc-
tion weights) to optimize the algorithm for performing point pattern analysis using K
function. Theoretical analysis and empirical evaluations conducted on a cloud platform
demonstrated that the optimization strategies effectively accelerated point pattern
analysis using K function. On top of the acceleration achieved by the optimizations,
parallelism exposed in the algorithm for performing point pattern analysis using K

Figure 9. Results of comprehensive point pattern analysis on the eBird checklist data set. This figure
shows that the point pattern underlying the eBird checklists is clustered at all spatial scales
examined (i.e., 0–700 km).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2249

function was exploited using OpenMP and MPI on the cloud platform in order to enable
point pattern analysis on point data sets of large size. Performance testing revealed that
the OpenMP-based parallelization achieved fairly good scalability with respect to the
number of CPU cores utilized. Only slight overhead introduced by using MPI on top of
OpenMP. The hybrid MPI/OpenMP parallel algorithm running on multiple computing
nodes much shortened the time to estimate K function and conduct simulations. The
computational challenge imposed by point pattern analysis tasks on large point data
sets involving many simulation runs can be addressed by utilizing distributed computing
resources provisioned by cloud computing. Empowered by the optimized and paralle-
lized algorithm, point pattern analysis using K function was accelerated utilizing cloud
computing to enable point pattern analysis on spatial big data.

We expect the conclusions reached in this study remain valid in other computing
environment (e.g., cloud computing provisioned by other cloud solutions, or traditional
HPC clusters) for several reasons. First, the optimizations and parallelization were imple-
mented in the cross-platform C++ programming language and thus can adapt to a
different computing infrastructure very easily. The implementation only requires the
OpenMP and MPI runtimes. The underlying computing infrastructure was transparent to
the implementation. Second, Huang et al. (2013c) had shown that there were no
significant performance differences in CPU, memory, and I/O of VMs created and
managed by Eucalyptus and by other open-source cloud solutions. Third, Xu et al.
(2009) had shown that the performance of parallel programs in VMs was close to that
in native, nonvirtualized environment.

Using Ripley’s K function as an example, this study demonstrated how cloud comput-
ing can be utilized to optimize and to accelerate geospatial analysis. The research results
make contributions to the broader movement of advancing geospatial cyber infrastruc-
ture to geospatial cloud computing to implement the platforms required for addressing
fundamental geoscience questions and application problems (Yang et al. 2010). By
provisioning reliable and scalable geospatial service for massive users, geospatial
cloud computing has the potential to engage nonexperts and citizens in scientific
research (Zhu et al. 2015, Jiang et al. 2016) in order to advance public knowledge
(Yang et al. 2011).

Acknowledgements

The work reported here was supported by grants from National Natural Science Foundation of
China (Project No.: 41431177), National Basic Research Program of China (Project No.:
2015CB954102), Natural Science Research Program of Jiangsu (14KJA170001), PAPD, and
National Key Technology Innovation Project for Water Pollution Control and Remediation
(Project No.: 2013ZX07103006). Supports to A-Xing Zhu through the Vilas Associate Award, the
Hammel Faculty Fellow Award, the Manasse Chair Professorship from the University of Wisconsin-
Madison, and the ‘One-Thousand Talents’ Program of China are greatly appreciated. The com-
ments from Professor James E. Burt and other members in the GIS group in the Department of
Geography, University of Wisconsin-Madison are much appreciated.

Disclosure statement

No potential conflict of interest was reported by the authors.

2250 G. ZHANG ET AL.

Funding

This work was supported by grants from National Natural Science Foundation of China (Project
No.: 41431177), National Basic Research Program of China (Project No.: 2015CB954102), Natural
Science Research Program of Jiangsu (14KJA170001), PAPD, and National Key Technology
Innovation Project for Water Pollution Control and Remediation (Project No.: 2013ZX07103006).
Supports to A-Xing Zhu through the Vilas Associate Award, the Hammel Faculty Fellow Award, the
Manasse Chair Professorship from the University of Wisconsin-Madison, and the ‘One-Thousand
Talents’ Program of China are greatly appreciated.

References

Baddeley, A.J. and Turner, R., 2005. Spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software, 12 (6), 1–42. doi:10.18637/jss.v012.i06

Baddeley, A.J., Turner, R., and Rubak, E., 2015. The SpatStat Package [online]. Available from: http://
github.com/spatstat/spatstat/blob/master/src/corrections.c [Accessed 20 April 2015].

Burt, J.E., Barber, G.M., and Rigby, D.L., 2009. Elementary statistics for geographers. New York:
Guilford Press.

Cormen, T.H., 2009. Introduction to algorithms. Cambridge, MA: MIT Press.
Diggle, P.J., 1983. Statistical analysis of spatial point patterns. Cambridge, MA: Academic Press.
eBird, 2015. [online]. Available from: http://ebird.org/content/ebird/ [Accessed 5 June 2014].
Evangelinos, C. and Hill, C., 2008. Cloud computing for parallel scientific HPC applications:

feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. Ratio, 2
(2.40), 2–34.

Evans, M.R., et al., 2013. Enabling spatial big data via CyberGIS: challenges and opportunities. In: S.
Wang and M. Goodchild, eds. CyberGIS: fostering a new wave of geospatial innovation and
discovery. New York: Springer.

Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2000. Quantitative geography: perspectives on
spatial data analysis. Thousand Oaks, CA: Sage.

Gao, H., Barbier, G., and Goolsby, R., 2011. Harnessing the crowdsourcing power of social media for
disaster relief. IEEE Intelligent Systems, 26 (3), 10–14.

Gao, S., et al., 2014. Constructing gazetteers from volunteered big geo-data based on Hadoop.
Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2014.02.004

Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. Geojournal, 69 (4),
211–221. doi:10.1007/s10708-007-9111-y

Haklay, M. and Weber, P., 2008. OpenStreetMap: user-generated street maps. IEEE Pervasive
Computing, 7 (4), 12–18. doi:10.1109/MPRV.2008.80

Huang, Q., et al., 2013a. Utilize cloud computing to support dust storm forecasting. International
Journal of Digital Earth, 6 (4), 338–355. doi:10.1080/17538947.2012.749949

Huang, Q., et al., 2013b. Accelerating geocomputation with cloud computing. In: X. Shi, V.
Kindratenko, and C. Yang, eds. Modern accelerator technologies for geographic information
science. New York: Springer, 41–51.

Huang, Q., et al., 2013c. Evaluating open-source cloud computing solutions for geosciences.
Computers & Geosciences, 59 (September), 41–52. doi:10.1016/j.cageo.2013.05.001

Illian, J., et al., 2008. Statistical analysis and modelling of spatial point patterns. Hoboken, NJ: John
Wiley & Sons.

Jiang, J., et al., 2016. CyberSoLIM: a cyber platform for digital soil mapping. Geoderma, 263 (1),
234–243. doi:10.1016/j.geoderma.2015.04.018

Law, R., et al., 2009. Ecological information from spatial patterns of plants: insights from point
process theory. Journal of Ecology, 97 (4), 616–628. doi:10.1111/jec.2009.97.issue-4

Li, Q., Zhang, T., and Yu, Y., 2011. Using cloud computing to process intensive floating car data for
urban traffic surveillance. International Journal of Geographical Information Science, 25 (8), 1303–
1322. doi:10.1080/13658816.2011.577746

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2251

http://dx.doi.org/10.18637/jss.v012.i06
http://github.com/spatstat/spatstat/blob/master/src/corrections.c
http://github.com/spatstat/spatstat/blob/master/src/corrections.c
http://ebird.org/content/ebird/
http://dx.doi.org/10.1016/j.compenvurbsys.2014.02.004
http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1080/17538947.2012.749949
http://dx.doi.org/10.1016/j.cageo.2013.05.001
http://dx.doi.org/10.1016/j.geoderma.2015.04.018
http://dx.doi.org/10.1111/jec.2009.97.issue-4
http://dx.doi.org/10.1080/13658816.2011.577746

Mineter, M.J., Dowers, S., and Gittings, B.M., 2000. Towards a HPC framework for integrated
processing of geographical data: encapsulating the complexity of parallel algorithms.
Transactions in GIS, 4 (3), 245–261. doi:10.1111/1467-9671.00052

Nurmi, D., et al., 2009. The eucalyptus open-source cloud-computing system. In: F. Cappello, C.
Wang, and R. Buyya, eds. Proceedings of the 9th IEEE/ACM international symposium on cluster
computing and the grid, 18–21 May Shanghai. Washington, DC: IEEE Computer Society, 124–131.

Pijanowski, B.C., et al., 2014. A big data urban growth simulation at a national scale: configuring
the GIS and neural network based land transformation model to run in a high performance
computing (HPC) environment. Environmental Modelling & Software, 51, 250–268. doi:10.1016/j.
envsoft.2013.09.015

Ripley, B.D., 1979. Tests of “randomness” for spatial point patterns. Journal of the Royal Statistical
Society. Series B (Methodological), 41 (3), 368–374.

Ripley, B.D., 1988. Statistical inference for spatial processes. Cambridge: Cambridge University Press.
Rowlingson, B.S. and Diggle, P.J., 1993. Splancs: spatial point pattern analysis code in S-Plus.

Computers & Geosciences, 19 (5), 627–655. doi:10.1016/0098-3004(93)90099-Q
Shekhar, S. et al., 2012. Spatial big-data challenges intersecting mobility and cloud computing. In:

Proceedings of the eleventh ACM international workshop on data engineering for wireless and
mobile access, SIGMOD/PODS ’12 international conference on management of data, 20–24 May
Scottsdale, AZ. New York: ACM, 1–6.

Stojanovic, N. and Stojanovic, D., 2013. High-performance computing in GIS: techniques and
applications. International Journal of Reasoning-based Intelligent Systems, 5 (1), 42–49.
doi:10.1504/IJRIS.2013.055126

Tang, W., Feng, W., and Jia, M., 2015. Massively parallel spatial point pattern analysis: Ripley’s K
function accelerated using graphics processing units. International Journal of Geographical
Information Science, 29 (3), 412–439. doi:10.1080/13658816.2014.976569

Torrellas, J., Lam, M.S., and Hennessy, J.L., 1994. False sharing and spatial locality in multiprocessor
caches. IEEE Transactions on Computers, 43 (6), 651–663. doi:10.1109/12.286299

U.S Census Bureau, 2015. Cartographic boundary shapefiles – Nation [online]. http://www2.census.
gov/geo/tiger/GENZ2014/shp/cb_2014_us_nation_20m.zip [Accessed 3 July 2015].

Wang, S., 2013. CyberGIS: blueprint for integrated and scalable geospatial software ecosystems.
International Journal of Geographical Information Science, 27 (11), 2119–2121. doi:10.1080/
13658816.2013.841318

Wang, Y., Wang, S., and Zhou, D., 2009. Retrieving and indexing spatial data in the cloud
computing environment. In: M.G. Jaatun, G. Zhao, and C. Rong, eds. Proceedings of the 1st
international conference on cloud computing, 1–4 December Beijing. Heidelberg: Springer, 322–
331.

Wilkinson, B. and Allen, M., 2004. Parallel programming: techniques and applications using networked
workstations and parallel computers. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall.

Wood, C., et al., 2011. eBird: engaging birders in science and conservation. PLoS Biology, 9 (12),
e1001220. doi:10.1371/journal.pbio.1001220

Wright, D.J. and Wang, S., 2011. The emergence of spatial cyberinfrastructure. Proceedings of the
National Academy of Sciences of the United States of America, 108 (14), 5488–5491. doi:10.1073/
pnas.1103051108

Xu, C., Bai, Y., and Luo, C., 2009. Performance evaluation of parallel programming in virtual
machine environment. In: Sixth IFIP international conference on network and parallel computing,
19–21 October Gold Coast. Washington, DC: IEEE Computer Society, 140–147.

Yang, C., et al., 2011. Spatial cloud computing: how can the geospatial sciences use and help
shape cloud computing? International Journal of Digital Earth, 4, 305–329. doi:10.1080/
17538947.2011.587547

Yang, C., et al., 2010. Geospatial Cyberinfrastructure: past, present and future. Computers,
Environment and Urban Systems, 34 (4), 264–277. doi:10.1016/j.compenvurbsys.2010.04.001

Zhu, A.-X., et al., 2015. A citizen data-based approach to predictive mapping of spatial variation of
natural phenomena. International Journal of Geographical Information Science, 29 (10), 1864–
1886. doi:10.1080/13658816.2015.1058387

2252 G. ZHANG ET AL.

http://dx.doi.org/10.1111/1467-9671.00052
http://dx.doi.org/10.1016/j.envsoft.2013.09.015
http://dx.doi.org/10.1016/j.envsoft.2013.09.015
http://dx.doi.org/10.1016/0098-3004(93)90099-Q
http://dx.doi.org/10.1504/IJRIS.2013.055126
http://dx.doi.org/10.1080/13658816.2014.976569
http://dx.doi.org/10.1109/12.286299
http://www2.census.gov/geo/tiger/GENZ2014/shp/cb_2014_us_nation_20m.zip
http://www2.census.gov/geo/tiger/GENZ2014/shp/cb_2014_us_nation_20m.zip
http://dx.doi.org/10.1080/13658816.2013.841318
http://dx.doi.org/10.1080/13658816.2013.841318
http://dx.doi.org/10.1371/journal.pbio.1001220
http://dx.doi.org/10.1073/pnas.1103051108
http://dx.doi.org/10.1073/pnas.1103051108
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1016/j.compenvurbsys.2010.04.001
http://dx.doi.org/10.1080/13658816.2015.1058387

	Abstract
	1. Introduction
	2. Ripley’s K function for point pattern analysis
	3. Optimizing and parallelizing K function
	3.1. The basic idea
	3.2. Optimizations
	3.2.1. Sorting points
	3.2.2. Reusing edge effect correction weights

	3.3. Parallelization
	3.3.1. OpenMP-based parallelization
	3.3.2. Hybrid MPI/OpenMP-based parallelization

	4. Cloud computing platform
	5. Experiments
	5.1. Experiment design
	5.2. Cost of edge effect correction
	5.3. Effects of sorting points
	5.4. Effects of reusing edge effect correction weights
	5.4.1. Impact of the distance difference threshold ∆d
	5.4.2. Impact of the study area complexity
	5.4.3. Impact of the maximum distance hmax
	5.4.4. Impact of the problem size

	5.5. Overall effectiveness of the optimizations
	5.5.1. Impact of the maximum distance hmax
	5.5.2. Impact of the problem size

	5.6. Parallelization efficiency
	5.6.1. OpenMP-based parallelization
	5.6.2. Hybrid MPI/OpenMP-based parallelization

	5.7 Point pattern analysis on a real-world data set

	6. Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References

